1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
/****************************************************************************
* $Id:: ssp.c 5804 2010-12-04 00:32:12Z usb00423 $
* Project: NXP LPC17xx SSP example
*
* Description:
* This file contains SSP code example which include SSP initialization,
* SSP interrupt handler, and APIs for SSP access.
*
****************************************************************************
* Software that is described herein is for illustrative purposes only
* which provides customers with programming information regarding the
* products. This software is supplied "AS IS" without any warranties.
* NXP Semiconductors assumes no responsibility or liability for the
* use of the software, conveys no license or title under any patent,
* copyright, or mask work right to the product. NXP Semiconductors
* reserves the right to make changes in the software without
* notification. NXP Semiconductors also make no representation or
* warranty that such application will be suitable for the specified
* use without further testing or modification.
****************************************************************************/
#include <LPC17xx.h> /* LPC17xx Peripheral Registers */
#include "ssp.h"
/* statistics of all the interrupts */
volatile uint32_t interrupt0RxStat = 0;
volatile uint32_t interrupt0OverRunStat = 0;
volatile uint32_t interrupt0RxTimeoutStat = 0;
volatile uint32_t interrupt1RxStat = 0;
volatile uint32_t interrupt1OverRunStat = 0;
volatile uint32_t interrupt1RxTimeoutStat = 0;
/*****************************************************************************
** Function name: SSP_IRQHandler
**
** Descriptions: SSP port is used for SPI communication.
** SSP interrupt handler
** The algorithm is, if RXFIFO is at least half full,
** start receive until it's empty; if TXFIFO is at least
** half empty, start transmit until it's full.
** This will maximize the use of both FIFOs and performance.
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void SSP0_IRQHandler(void)
{
uint32_t regValue;
regValue = LPC_SSP0->MIS;
if ( regValue & SSPMIS_RORMIS ) /* Receive overrun interrupt */
{
interrupt0OverRunStat++;
LPC_SSP0->ICR = SSPICR_RORIC; /* clear interrupt */
}
if ( regValue & SSPMIS_RTMIS ) /* Receive timeout interrupt */
{
interrupt0RxTimeoutStat++;
LPC_SSP0->ICR = SSPICR_RTIC; /* clear interrupt */
}
/* please be aware that, in main and ISR, CurrentRxIndex and CurrentTxIndex
are shared as global variables. It may create some race condition that main
and ISR manipulate these variables at the same time. SSPSR_BSY checking (polling)
in both main and ISR could prevent this kind of race condition */
if ( regValue & SSPMIS_RXMIS ) /* Rx at least half full */
{
interrupt0RxStat++; /* receive until it's empty */
}
return;
}
/*****************************************************************************
** Function name: SSP_IRQHandler
**
** Descriptions: SSP port is used for SPI communication.
** SSP interrupt handler
** The algorithm is, if RXFIFO is at least half full,
** start receive until it's empty; if TXFIFO is at least
** half empty, start transmit until it's full.
** This will maximize the use of both FIFOs and performance.
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void SSP1_IRQHandler(void)
{
uint32_t regValue;
regValue = LPC_SSP1->MIS;
if ( regValue & SSPMIS_RORMIS ) /* Receive overrun interrupt */
{
interrupt1OverRunStat++;
LPC_SSP1->ICR = SSPICR_RORIC; /* clear interrupt */
}
if ( regValue & SSPMIS_RTMIS ) /* Receive timeout interrupt */
{
interrupt1RxTimeoutStat++;
LPC_SSP1->ICR = SSPICR_RTIC; /* clear interrupt */
}
/* please be aware that, in main and ISR, CurrentRxIndex and CurrentTxIndex
are shared as global variables. It may create some race condition that main
and ISR manipulate these variables at the same time. SSPSR_BSY checking (polling)
in both main and ISR could prevent this kind of race condition */
if ( regValue & SSPMIS_RXMIS ) /* Rx at least half full */
{
interrupt1RxStat++; /* receive until it's empty */
}
return;
}
/*****************************************************************************
** Function name: SSP0_SSELToggle
**
** Descriptions: SSP0 CS manual set
**
** parameters: port num, toggle(1 is high, 0 is low)
** Returned value: None
**
*****************************************************************************/
void SSP_SSELToggle( uint32_t portnum, uint32_t toggle )
{
if ( portnum == 0 )
{
if ( !toggle )
LPC_GPIO0->FIOCLR |= (0x1<<16);
else
LPC_GPIO0->FIOSET |= (0x1<<16);
}
else if ( portnum == 1 )
{
if ( !toggle )
LPC_GPIO0->FIOCLR |= (0x1<<6);
else
LPC_GPIO0->FIOSET |= (0x1<<6);
}
return;
}
// Bent code:
// SPI power bit in PCONP register (see table 46)
#define PCSPI_BIT 8
// SPI clock bits (16 and 17) in PCLKSEL0 register (see table 40)
#define PCLK_SPI_BIT 16
typedef enum {
CCLK_4 = 0x0, // 00: PCLK_peripheral = CCLK/4
CCLK_1 = 0x1, // 01: PCLK_peripheral = CCLK
CCLK_2 = 0x2, // 10: PCLK_peripheral = CCLK/2
CCLK_8 = 0x3, // 11: PCLK_peripheral = CCLK/8
} ClockDevisor;
/*****************************************************************************
** Function name: SSPInit
**
** Descriptions: SSP port initialization routine
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void SSP0Init( void )
{
uint8_t i, Dummy=Dummy;
/* Enable AHB clock to the SSP0. */
//LPC_SC->PCONP |= (0x1<<21);
/* Further divider is needed on SSP0 clock. Using default divided by 4 */
//LPC_SC->PCLKSEL1 &= ~(0x3<<10);
//Bent code:
// Power up the SPI bus.
// Remark: On reset, the SPI is enabled (PCSPI = 1).
LPC_SC->PCONP |= (1 << PCSPI_BIT); // set bit 8 in PCONP (PCSPI bit)
ClockDevisor clk = CCLK_8;
LPC_SC->PCLKSEL0 &= ~(0x3 << PCLK_SPI_BIT);
LPC_SC->PCLKSEL0 |= ((clk & 0x3) << PCLK_SPI_BIT); // set bit 16 and 17 in PCLKSEL0
/* P0.15~0.18 as SSP0 */
LPC_PINCON->PINSEL0 &= ~(0x3UL<<30);
LPC_PINCON->PINSEL0 |= (0x2UL<<30);
LPC_PINCON->PINSEL1 &= ~((0x3<<0)|(0x3<<2)|(0x3<<4));
LPC_PINCON->PINSEL1 |= ((0x2<<0)|(0x2<<2)|(0x2<<4));
#if !USE_CS
LPC_PINCON->PINSEL1 &= ~(0x3<<0);
LPC_GPIO0->FIODIR |= (0x1<<16); /* P0.16 defined as GPIO and Outputs */
#endif
/* Set DSS data to 8-bit, Frame format SPI, CPOL = 0, CPHA = 0, and SCR is 15 */
LPC_SSP0->CR0 = 0x0707;
/* SSPCPSR clock prescale register, master mode, minimum divisor is 0x02 */
LPC_SSP0->CPSR = 0x2;
for ( i = 0; i < FIFOSIZE; i++ )
{
Dummy = LPC_SSP0->DR; /* clear the RxFIFO */
}
/* Enable the SSP Interrupt */
NVIC_EnableIRQ(SSP0_IRQn);
/* Device select as master, SSP Enabled */
#if LOOPBACK_MODE
LPC_SSP0->CR1 = SSPCR1_LBM | SSPCR1_SSE;
#else
#if SSP_SLAVE
/* Slave mode */
if ( LPC_SSP0->CR1 & SSPCR1_SSE )
{
/* The slave bit can't be set until SSE bit is zero. */
LPC_SSP0->CR1 &= ~SSPCR1_SSE;
}
LPC_SSP0->CR1 = SSPCR1_MS; /* Enable slave bit first */
LPC_SSP0->CR1 |= SSPCR1_SSE; /* Enable SSP */
#else
/* Master mode */
LPC_SSP0->CR1 = SSPCR1_SSE;
#endif
#endif
/* Set SSPINMS registers to enable interrupts */
/* enable all error related interrupts */
LPC_SSP0->IMSC = SSPIMSC_RORIM | SSPIMSC_RTIM;
return;
}
/*****************************************************************************
** Function name: SSPInit
**
** Descriptions: SSP port initialization routine
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void SSP1Init( void )
{
uint8_t i, Dummy=Dummy;
/* Enable AHB clock to the SSP1. */
LPC_SC->PCONP |= (0x1<<10);
/* Further divider is needed on SSP1 clock. Using default divided by 4 */
LPC_SC->PCLKSEL0 &= ~(0x3<<20);
/* P0.6~0.9 as SSP1 */
LPC_PINCON->PINSEL0 &= ~((0x3<<12)|(0x3<<14)|(0x3<<16)|(0x3<<18));
LPC_PINCON->PINSEL0 |= ((0x2<<12)|(0x2<<14)|(0x2<<16)|(0x2<<18));
#if !USE_CS
LPC_PINCON->PINSEL0 &= ~(0x3<<12);
LPC_GPIO0->FIODIR |= (0x1<<6); /* P0.6 defined as GPIO and Outputs */
#endif
/* Set DSS data to 8-bit, Frame format SPI, CPOL = 0, CPHA = 0, and SCR is 15 */
LPC_SSP1->CR0 = 0x0707;
/* SSPCPSR clock prescale register, master mode, minimum divisor is 0x02 */
LPC_SSP1->CPSR = 0x2;
for ( i = 0; i < FIFOSIZE; i++ )
{
Dummy = LPC_SSP1->DR; /* clear the RxFIFO */
}
/* Enable the SSP Interrupt */
NVIC_EnableIRQ(SSP1_IRQn);
/* Device select as master, SSP Enabled */
#if LOOPBACK_MODE
LPC_SSP1->CR1 = SSPCR1_LBM | SSPCR1_SSE;
#else
#if SSP_SLAVE
/* Slave mode */
if ( LPC_SSP1->CR1 & SSPCR1_SSE )
{
/* The slave bit can't be set until SSE bit is zero. */
LPC_SSP1->CR1 &= ~SSPCR1_SSE;
}
LPC_SSP1->CR1 = SSPCR1_MS; /* Enable slave bit first */
LPC_SSP1->CR1 |= SSPCR1_SSE; /* Enable SSP */
#else
/* Master mode */
LPC_SSP1->CR1 = SSPCR1_SSE;
#endif
#endif
/* Set SSPINMS registers to enable interrupts */
/* enable all error related interrupts */
LPC_SSP1->IMSC = SSPIMSC_RORIM | SSPIMSC_RTIM;
return;
}
/*****************************************************************************
** Function name: SSPSend
**
** Descriptions: Send a block of data to the SSP port, the
** first parameter is the buffer pointer, the 2nd
** parameter is the block length.
**
** parameters: buffer pointer, and the block length
** Returned value: None
**
*****************************************************************************/
void SSPSend( uint32_t portnum, uint8_t *buf, uint32_t Length )
{
uint32_t i;
uint8_t Dummy = Dummy;
for ( i = 0; i < Length; i++ )
{
if ( portnum == 0 )
{
/* Move on only if NOT busy and TX FIFO not full. */
while ( (LPC_SSP0->SR & (SSPSR_TNF|SSPSR_BSY)) != SSPSR_TNF );
LPC_SSP0->DR = *buf;
buf++;
#if !LOOPBACK_MODE
while ( (LPC_SSP0->SR & (SSPSR_BSY|SSPSR_RNE)) != SSPSR_RNE );
/* Whenever a byte is written, MISO FIFO counter increments, Clear FIFO
on MISO. Otherwise, when SSP0Receive() is called, previous data byte
is left in the FIFO. */
Dummy = LPC_SSP0->DR;
#else
/* Wait until the Busy bit is cleared. */
while ( LPC_SSP0->SR & SSPSR_BSY );
#endif
}
else if ( portnum == 1 )
{
/* Move on only if NOT busy and TX FIFO not full. */
while ( (LPC_SSP1->SR & (SSPSR_TNF|SSPSR_BSY)) != SSPSR_TNF );
LPC_SSP1->DR = *buf;
buf++;
#if !LOOPBACK_MODE
while ( (LPC_SSP1->SR & (SSPSR_BSY|SSPSR_RNE)) != SSPSR_RNE );
/* Whenever a byte is written, MISO FIFO counter increments, Clear FIFO
on MISO. Otherwise, when SSP0Receive() is called, previous data byte
is left in the FIFO. */
Dummy = LPC_SSP1->DR;
#else
/* Wait until the Busy bit is cleared. */
while ( LPC_SSP1->SR & SSPSR_BSY );
#endif
}
}
return;
}
/*****************************************************************************
** Function name: SSPReceive
** Descriptions: the module will receive a block of data from
** the SSP, the 2nd parameter is the block
** length.
** parameters: buffer pointer, and block length
** Returned value: None
**
*****************************************************************************/
void SSPReceive( uint32_t portnum, uint8_t *buf, uint32_t Length )
{
uint32_t i;
for ( i = 0; i < Length; i++ )
{
/* As long as Receive FIFO is not empty, I can always receive. */
/* If it's a loopback test, clock is shared for both TX and RX,
no need to write dummy byte to get clock to get the data */
/* if it's a peer-to-peer communication, SSPDR needs to be written
before a read can take place. */
if ( portnum == 0 )
{
#if !LOOPBACK_MODE
#if SSP_SLAVE
while ( !(LPC_SSP0->SR & SSPSR_RNE) );
#else
LPC_SSP0->DR = 0xFF;
/* Wait until the Busy bit is cleared */
while ( (LPC_SSP0->SR & (SSPSR_BSY|SSPSR_RNE)) != SSPSR_RNE );
#endif
#else
while ( !(LPC_SSP0->SR & SSPSR_RNE) );
#endif
*buf++ = LPC_SSP0->DR;
}
else if ( portnum == 1 )
{
#if !LOOPBACK_MODE
#if SSP_SLAVE
while ( !(LPC_SSP1->SR & SSPSR_RNE) );
#else
LPC_SSP1->DR = 0xFF;
/* Wait until the Busy bit is cleared */
while ( (LPC_SSP1->SR & (SSPSR_BSY|SSPSR_RNE)) != SSPSR_RNE );
#endif
#else
while ( !(LPC_SSP1->SR & SSPSR_RNE) );
#endif
*buf++ = LPC_SSP1->DR;
}
}
return;
}
/******************************************************************************
** End Of File
******************************************************************************/
|