#include #include #include #include #include #include #include ///////////////////////////////////////// // // Listener and Notifier classes: // ///////////////////////////////////////// class Listener; class NotifierBase { public: virtual void disconnect(Listener* object) {} }; class Listener { public: virtual ~Listener() { for (auto signal = signals.begin(); signal != signals.end(); ++signal) { (*signal)->disconnect(this); } } void registerNotifier(NotifierBase* signal) { signals.insert(signal); } void unregisterNotifier(NotifierBase* signal) { signals.erase(signal); } std::set signals; }; template class Notifier : public NotifierBase { public: Notifier() {} ~Notifier() { for (auto slot = slots.begin(); slot != slots.end(); ++slot) { (*slot).first->unregisterNotifier(this); } } void connect(Listener* object, std::function slot) { slots[object] = slot; if(object) { object->registerNotifier(this); } } void disconnect(Listener* object) { slots.erase(object); } void notify(T t, Args...args) { for (auto slot = slots.begin(); slot != slots.end(); ++slot) { (*slot).second(t, args...); } } std::map> slots; }; ///////////////////////////////////////// // // Code which I don't understand but does something clever and produces a compile warning: // ///////////////////////////////////////// template struct seq{}; template struct gen_seq : gen_seq{}; template struct gen_seq<0, Is...> : seq{}; template struct placeholder{}; namespace std{ template struct is_placeholder< ::placeholder > : integral_constant{}; } // std:: namespace aux{ template auto easy_bind(seq, F&& f, Ts&&... vs) -> decltype(std::bind(std::forward(f), std::forward(vs)..., ::placeholder<1 + Is>()...)) { return std::bind(std::forward(f), std::forward(vs)..., ::placeholder<1 + Is>()...); } } // aux:: template auto mem_bind(R (C::*ptmf)(FArgs...), Args&&... vs) -> decltype(aux::easy_bind(gen_seq<(sizeof...(FArgs) + 1) - sizeof...(Args)>(), ptmf, std::forward(vs)...)) { // the +1s for 'this' argument static_assert(sizeof...(Args) <= sizeof...(FArgs) + 1, "too many arguments to mem_bind"); return aux::easy_bind(gen_seq<(sizeof...(FArgs) + 1) - sizeof...(Args)>(), ptmf, std::forward(vs)...); } template auto mem_bind(T C::*ptmd, Args&&... vs) -> decltype(aux::easy_bind(gen_seq<1 - sizeof...(Args)>(), ptmd, std::forward(vs)...)) { // just 'this' argument static_assert(sizeof...(Args) <= 1, "too many arguments to mem_bind"); return aux::easy_bind(gen_seq<1 - sizeof...(Args)>(), ptmd, std::forward(vs)...); } ///////////////////////////////////////// // // Example: // ///////////////////////////////////////// class MyObject : public Listener { public: void onMouseMoved(int x, int y) { std::cout << __PRETTY_FUNCTION__ << std::endl; std::cout << "Mouse moved: " << x << "," << y << std::endl; } }; class MyObject2 : public Listener { public: void mouseMoved(int x, int y) { std::cout << __PRETTY_FUNCTION__ << std::endl; std::cout << "Mouse moved: " << x << "," << y << std::endl; } }; class Button { public: Notifier mouseMove; // arguments: (int x, int y) void emulateMouseMove(int x, int y) { mouseMove.notify(x, y); } }; #define CONN(O, M) &O, mem_bind(&decltype(O)::M, O) #define obj_connect(SRC, SIG, TAR, SLO) SRC.SIG.connect(&TAR, mem_bind(&decltype(TAR)::SLO, TAR)) #define fun_connect(SRC, SIG, SLO) SRC.SIG.connect(nullptr, SLO) int main() { Button btn; MyObject object; //btn.mouseMove.connect(&object, std::bind(&MyObject::onMouseMoved, std::ref(object), _1, _2 )); // 'Vanilla' interface //btn.mouseMove.connect(&object, std::bind(&decltype::onMouseMoved, std::ref(object), _1, _2 )); // Use decltype //btn.mouseMove.connect(&object, mem_bind(&decltype(object)::onMouseMoved, object)); // Use clever mem_bind construct btn.mouseMove.connect(CONN(object, onMouseMoved)); // Use convenience macro obj_connect(btn, mouseMove, object, onMouseMoved); fun_connect(btn, mouseMove, [](int x, int y) { std::cout << __PRETTY_FUNCTION__ << std::endl; std::cout << x << " x " << y << std::endl; } ); MyObject2 object2; btn.mouseMove.connect(CONN(object2, mouseMoved)); MyObject2* pobject2 = new MyObject2(); btn.mouseMove.connect(pobject2, mem_bind(&decltype(std::remove_reference(*pobject2))::mouseMoved, std::ref(*pobject2))); // Now trigger the notification btn.emulateMouseMove(10,10); } #if 0 #include #include #include #include #include #include template class SignalBase { public: virtual T emit(T a) { return a; } T slot(SignalBase* o, T a) { return o->emit(a); } }; template class Signal : public SignalBase { public: typedef SignalBase* signal_ptr_t; static T do_emit(signal_ptr_t o1, signal_ptr_t o2, T arg) { std::cout << __PRETTY_FUNCTION__ << "\n"; // printf("%p %p\n", (void*)o1, (void*)o2); return o1->slot(o2, arg); } using bound_emit_t = decltype(std::bind(do_emit, signal_ptr_t(), signal_ptr_t(), std::placeholders::_1)); using mem_t = decltype() void connect(Signal& o) { connection_map[&o].emplace_back(do_emit, this, &o, std::placeholders::_1); if (o.connectee_objects.find(this) == o.connectee_objects.end()) { o.connectee_objects.insert(this); } } void disconnect(Signal& o) { if (connection_map.find(&o) != connection_map.end()) { connection_map[&o].clear(); connection_map.erase(&o); } if (o.connectee_objects.find(this) != o.connectee_objects.end()) { connectee_objects.erase(this); } } void send(T a) { std::cout << "send: " << a << std::endl; for (auto& slot : connection_map) { for (auto& conn : slot.second) { std::cout << conn(a) << std::endl; } } } virtual ~Signal() { // Iterate all objects to which this is connected and disconnect from them: for (auto& c : connectee_objects) { c->disconnect(*this); } // Iterate all objects connected to this and disconnect them: for (auto& kv : connection_map) { disconnect(*kv.first); } } std::map*, std::vector> connection_map; std::set*> connectee_objects; // Signals to which this is connected }; ///////////////////////////////////////////////////////////////////////////////////// template class Signal2 : public Signal { public: Signal2(T t) : t(t) {} virtual T emit(T a) override { return a + t;} T t; }; int main() { std::cout << std::endl << "First:" << std::endl; { Signal o1; { Signal2 o2(1); Signal2 o3(1); o1.connect(o1); o1.connect(o2); o1.connect(o3); o1.send(4); o1.disconnect(o2); o1.send(5); } // implicit o1.disconnect(o3) in o3 destructor. o1.send(6); } std::cout << std::endl << "Second:" << std::endl; { Signal* o = new Signal(); Signal& o1 = *o; { Signal2 o2(1); Signal2 o3(1); o1.connect(o1); o1.connect(o2); o1.connect(o3); o1.send(4.1); delete o; std::cout << std::endl << " -- post delete:" << std::endl; o1.send(4.2); } // implicit o1.disconnect(o3) in o3 destructor. } std::cout << std::endl << "Third:" << std::endl; { Signal o1; { Signal2 o2("a"); Signal2 o3("b"); o1.connect(o1); o1.connect(o2); o1.connect(o3); o1.send("hello"); o1.disconnect(o2); o1.send("world"); } // implicit o1.disconnect(o3) in o3 destructor. o1.send("nisse"); } return 0; } #endif ///////////////////////////////////////////////////////// // What I would like(tm) ///////////////////////////////////////////////////////// /* class Foo { public: Signal changeSignal; void worker() { somethingChangedSignal.emit(42, 1.234, "hello"); } }; class Bar { public: Bar(Foo &foo) { foo.changeSignal.connect(this, &Bar::notifyCallback); } void notifyCallback(int a, float b, std::string c) { // ... } }; class Bas { public: void iWannaKnow(int a, float b, std::string c) { // ... } }; int main() { Foo foo; Bar bar(foo); Bas bas; foo.changeSignal.connect(&bas, &Bas::iWannaKnow); foo.worker(); } */